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First works on the motion of an Earth’s satellite utilized the classical per- 
turbation theory of the elliptical elements of the ‘orbit. The gravitational 
force potential contained the first nontrivial term of the potential expan- 
sion In spherical functions‘ [l and 23. The additional terms were taken Into 
account In [ 3 and 43 . A new qualitative effect was discovered which does not 
appear In the first approximation. Another direction Is connected with the 
approximate representation of the Earth’s potential by an expression which 

ermlts the separation of variables In the Jacobi-Hamilton equations [5 to 
81 A great deal of attention Is devoted to the problem of satellite motion 
ln’[ 93 . 

The present paper derives new equations of motion, the form of which 1s 
suitable for application of averaging and the small parameter methods. . 
Utilization of spherical coordinates leads to lowering of the equations’ 
order. Study of the orbltal elements Is relegated to second place. Consl- 
dered are the simplest forms of motion. 
ing the equations of motion (*). 

Use of paper [lo) Is made In derlv- 

1. Introduotory notrtlon. We Introduce a fixed system of coordinates 

ox I/ 2 with origin at the Earth’s center and unit vectors ii, i,, is. 

The z-axis Is the axis of Earth’s rotation and Is directed towards the 

North Pole. The spherical system of coordinates r, 6, k Is Introduced 

5 = r sin 6 co5 h, y = r sin 6 sin h, z = rcos6 (1.1) 

The coordinate set of the spherical system of coordinates Is given by the 

unit vectors e,, es, eh. The Earth’s mass distribution is assumed such that 

the gravitations1 field potential does not contain X and is an even func- 

tion of y (y = Cos 6). The latter assumption 1s not essential for the 

greatest part of the paper. 

*) A.I. Lur’e. Certain nonlinear problems of the dynamic of space flight. 
Presentation. Nonlinear Problems of Space Flight. Third Conference on Non- 
linear Oscillations. Berlin, 1964. 
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The material point M of unit mass (satellite) moves only due to the 

action of the Earth's gravitational forces; the Influence of the atmosphere, 

the Moon, the Sun, etc. Is neglected. 

Let r be the radius vector of point M . We Introduce the orbital set 

e,, e,, n. Vector e, Is parallel. and codlrectlonal with the vector r, 
r = e,r. Vector n Is perpendicular to the vectors r , dr/dt and Is codl- 

rectlonal with r X dr/dt . Vector eq Is defined by the equality 

eq -nXe, 

2. Zhe Mtirl rqmtlonr oi motion. ..The equations of motion for the 
point M are of the form 

rFr I IA2 = - grad IT (2.1) 
Let us Introduce Into consideration the angular momentum 

k = r x dr / dt, Ikl = Ic, k = nk (2.2) 

By dot multlpllcatlon by e, Equation (2.1) Is transformed Into 

d2r ,;” an --_-__-- 
dt” r3 ar (2.3) 

It follows from (2.1) and (2.2) that 

dk / dt = - r x grad II (2.4) 

Substituting r = re, Into (2.2) and multiplying vectorlally by e,, the 

equation for e, Is obtained 

de, / dt = rw2kn X e, (2.5) 

Substituting k = kn, r = re, Into (2.4) and dot multiplying by n the 

following equation Is obtained 

dk / dt = - re,.grad II (eq = n x er) (2.Q 

Multiplying Equation (2.4) twice vectorlally by n there results 

dn 
z= 

- 5 (n .grad FI) e, x n (2.7) 
Introduce the vector 

o1 = kre2n - rk-’ (n-grad TZ) e, 

Equations (2.5),(2.7) can be rewritten Into the form 

(2.8) 

de, _ 
ml x 6, 

dn 
dt dt =m,Xn (2.9) 

I.e. the vector IN, Is the angular velcclty vector of the orbital set e,, eQr 

n. 

Equations (2.9), (2.3) and (2.5) form a complete system of equations of 

motion of ninth order [lo] with the three known relationships 

e, . e, = 1, e, - n = 0, n.n=l (2.10) 

3. Firrt form of thr l autloar of motion. We introduce the angular velo- 
city vector up of the set e,, es, eh of the spherical system of coordl- 

nates 
0 - i,h’ $- eh6’ s- (h’ E dhldt) (3.1) 
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We will denote by x an angle formed by the Instantaneous orbital plane 

containing r and r',and the meridianal plane containing I, and r . The 

sets e,, eq, ll and e,,e@,eh*have In common the vector e,. . Their angular 

velocities VJ, and ulg can differ only by the terms e,X', i.e. 

$ n - + (n-grad II) e, = h’i, + 6’eA + x’e, (3.2) 

Projecting the equality (3.2) on 6, a, eh, there results the scalar 

equalities 

in 

to 
be 

- in grad lI = A’ cos 6 + x’ 

- $sinX = - h’ sin 6, -$ cm x = 6 (3.3) 

We introduce a new Independent variable T and a dependent variable u 

accordance with dz = kr-*dt = ku*dt, u = r-l (3.4) 
In the problem of Keplerian motion, the angle of true anomaly corresponds 
the nonholonomlc variable T . Differentiation with respect to T will 

denoted by a prime. From (3.3) we have 

XI = S-2 - A'cos~., h'sin 6 = sin x, 6’ = cos x (3.5) 
Here Is introduced the notation 

t-C?= -~n.gradn=-r~n.(~~e,+~~~e, 

ra drI 1 an =-- -- & gjnseQ= ,&a ,gSinx (3.6) 

Let us introduce a new variable 

r= 

Differentiating y with respect 

(3.5) =d (3.6) 

7’ = - sin 6 cos x, 

cos 6 (3.7) 
to 7, we find on the strength of 

1 - +y2 - f2 = sin” 19 sin2 x 

7” = - cos 6 + sin 0 sin xs2 = - y + sin2 0 sin2 x ’ ‘A 
k%? sin 6 ai3 

, (3.8) I 

The differential equation for y follows from (3.8) 

(h = k*) (3.9). 

111 Equation (2.3), we substitute (3.4) and obtain 

- &h’ 

From (2.6) and (3.4) we find 

an h’ = ‘$ f = - 2r3e,.grad ITI = - 2ra F6 cos x 

From (3.7) and (3.8) we finally obtain 

h’ = -s$a$ sin6cosX=-_a!f 

(3.10) 

(3.11) 

(3.12) 
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Equations (3.12) and (3.9) have an integral which expresses the constancy 

of the projection of angular momentum on the z-axis. 

h (1 - 72 - f2) = CJ (a = con&) (3.13) 

Eliminating h from (3.9) and (3.10) with the aid of (3.12) and (3.13) 

we get 

u”+u=- 
1 - T* - y* 

d ( an 1 an ---_ 
a+ d ar U'f ) 

+f + y = - .L& (1 - 72 - 7’72 ;Y! (3.14) 

These equations admit the energy integral 

0 (u2 + u’s) = 2 (E - rI) (1 - 72 - 7’2) (E = const) (3.15) 

Ellmlnatlng the Independent variable 7 (this can be done with the aid of 

the principle of least action In the Jacobi form ([ll] p.712), there results 

one equation of second order. This, apparently, does not facilitate the 

Investigation. 

The present section derived in greater detail Equations (3.14)ass~qgeskd 

by Lur’e in the Presentatlon.noted previously. 

4. Llooond form of thr rquatlonr or motion. Equation (2.6) can be trans- 
formed into 

dk 

dt= 
_ rep x (4.11 

In Equations (4.1), (2.5) and (2.3), we pass to the new independent Vari- 

able 9 and dependent variable u 

dq = r-2dt = u2dt, u __- r-1 (4.2) 

We obtaln Equations 

dk sin6 -n de 
dcp = Tar GJ.9 A=kxe,. 

dT 

$+hu=+ h = k2 

(4.3) 

(4.4) 

Let us express the vectors k , 0, by the projections on the fixed axes 

of the rectangular coordinates x, u, p 

k = k,i, + k,i, + k,i,, e, = r,i, + rzi2 + 7i, 

(4.5) 
rl = sill 6 cos I., r2 = sin 6 sin A, 7 = cos6 

Substituting (4.5) into (4.3), we get the scalar equations 
. 

dh To an dkz 
2@= 

Tl an --- 
up aT ’ 

-- I 
* = us ar 

dkr o -= 
dv 

(4.6) 

dra * = kg, - k,r, g = k,r, - k,r, (4.7) 

The eighth order system consisting of Equations (4.4), (4.6) and (4.7) 

describes the motion of the point M . There are known two obvious relatlon- 
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ships 

Differentiating (4.7) with respect to cp we find on the strength of (4.6) 

to (4.8) 

h = IfI2 + 1~~2 + k, 

(4.9) 

(4.10) 

Differentiating h with respect to cp , we get on the strength of (4.6) 

and (4.7) 
dh 
-= 

2 XIdy ---- 
dv 3ar d9 

(4.11) 

Equations (4.4), (4.10) and (4.11) represent a complete system of fifth 

order; the order can be reduced to second utilizing the 'autonomy" and two 

known Integrals corresponding to (3.13) and (3.15) 

h(1 - y2) - ($)” = cr 

2 + hU2 = 2 (E - II) 

(a = const) 

(I!-= const) (4.12) 

By replacing the variable q by 7 (& = dhd~) we can pass from Qua- 

tions (4.4), (4.10) and (4.11) to Equations (3.9) to (3.11). We can utilize 

the symbolic formula for y and u 

(4.13) 

If the Independent variable u, Is used, then we will find 

d9 -+n 
du - 2E + q) - 2 ‘2 b=Gg 

q(~)a=-~-~(1-~2)(211-2E+q) (I7, c = const) (4.14) 

The system of second order (4.14) Is complete. It Is suitable for study- 

ing the sections of the /trajectories with monotonously varying radius 7 . 

5 QI thr Lagmngr’r rqurtlonr. In the Lagrange's equations of second 
ordei'([ll] 11.28 ) the Independent variable t 

7 
Is assumed to be time. Let 

4, (8 = I,..., n be the generallzed coordinates, T the kinetic energy 

II 

T=+ 2 A,, (91, * * .9 9,) 9k.4, (5.1) 
k, m=l 

The dot denotes differentiation with respect to time. Let us Introduce 
a new independent variable cp In accordance with 

CQJ =6 (Ql, . . ., 913 dt (5.2) 

Differentiation with respect to Q In the present and the following Sec- 
tion will be denoted by a prime. Let 

n 

T, = f x +,, ('?I, . . . . ‘J~Qk”&,,’ (53) 

k, m=l 

It can be proved that the equations of motion are of the form 
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%q d ba$ ( ) aT, -6'dK=Q* (s=l,...,n) 
8 

(5.4) 

Here Q, Is the generalized force corresponding to the coordinate p, . 

6. A diffarmt drrlvation of the rqubtlonr of motion. Equations (5.4) 
can be utilized for a shorter but less descriptive derivation of Equations 
(4.4), (4.10) and (4.11) and consequently (3.14). The kinetic energy of the 
point M In the spherical system of coordinates Is 

T = l/Z [r’* + r%‘* + r* sin2 6h'2] (6.1) 

Assuming In (6.1) 

r ZZZ u-1, cos6=r (6.2) 

we find for T* (5.3) 

(6.3) 

Let us Introduce the independent variable rp 

dq = z3 dt (6.4) 

Differentiation with respect to cp will be denoted by a prime. Equations 
(5.4) then become 

d u’ zd* Up arI 
U*&J7+2 y--t, _r*+U(1-r2)h’2=-~ 

z&2 & (h’ (1 - p9) = 0 

6’3) 

Let us Introduce an auxiliary quantity 

A = y2 (1 y-1 f (1 - y2) J”‘2 (6.8) 

Equation (6.5) becomes (4.4), while 
h (6.8) with respect to Q 

there obtains 

7. Third form of thr rquationn of motion, In Equations (3.9), (3.10) 
and (3.12), the following substitution Is made: 

hu 
w=--1, 

P 

h dzc 

=-Ix 
(p= const) (7.1) 

The equations for u and u are of the form 

dw 2 an dy 
-=- 
dz v-qarx? 

$=w+(l+$$)+$+~~ (7.2) 

Assuming that the potential energy Is 

n=--n+pn*, In*I@ueao (7.3) 

and eliminating u and ,.&a~ with the aid of (7.1),we obtain the equations 
of motion 

dw 2~ aIT, dy 
dz=-v- 

--- 
1+ w a~ dz ’ 

dp 2P2 an, d'r --_--- 
dz -- (1 +zu)~ 8~ dt (p= +, (7..5) 
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(7.6) 

We assume, that after differentiating II, , the variable u 1s substi- 
tuted by 

u=(l +KQp-1 (7.7) 

Letting ~&EO In Equations (7.4) to (7.6), then, they have the obvious 
solution 

p= const, w=ecos(z-_I), 

v = e sin (T -?I), 7 = m sin (z -T2) (7.9) 

which corresponds to the Keplerian motion 

r=~-1=p(l+ecos(‘F--‘Fi))-~ (7.9) 

The orbital inclination angle t is found from the equality 

sin i=m (7.10) 

Therefore, the variable p can be iqegarded as a focal parameter, while 
the quantity 

ea = wa + v2 (7.11) 

as the square of eccentricity of the osculating ellipse. 

Equations (7.4) to (7.6) are convenient for Investigating near circular 
orbits. They have two Integrals which correspond to the integrals (3.13) 
and (3.15) 

p [I - r2 - (dy/dz)2] = cl (Cl = const) (7.12) 

IS + v2 = 1 - 2p (c2 + rI*) (c2 = const) (7.13) 

If t is the orbital inclination angle of the osculating ellipse, then 
it follows from (3.8) that 

COG i = (is-n)2 = sin2 x sin* 0 = I- 72 - (dr/dt)a 

The Integrals (7.12) and (7.13) can be rewritten in the form 

(7.14) 

p C0S2 i = cl, 1 - ea = 2p (c2 + II,) (7.15) 

If the focal parameter P of the orbit Is essentially constant, then the 
orbital Inclination angle t and the eccentricity e of the osculating 
ellipse are nearly constant. 

Note . From (7.15) follows the inequality 

0 < C0s2 i = 
2c1(ca + KJ 

1 - e2 61 (7.16) 

If the quantity nII during motion satisfies the condition 

InIll- HOI<& II,= const (7.17) 

then from the integrals (7.15) and (7.16) follow the bounds of the satellite 
trajectory with Initial values of the parameters tc, e,, PO 

O<e0<1, 0 < io < l/2% O<ro<oo (7.18) 

During the entire motion the following inequalities are satisfied: 

ea g 1 - (1 -eo2)cos2 i,(l-6 - 2rcS)g + e+ 2r&l (7.19) 

1 > cos2 i > cos* ic (1 - eo2) (1 - e - 2r06) (1 + e + ~~cJJ)-~ 

1 
r” I+ (eTe4r&) 

l+e 
drdro I- (e+4r& (7.21) 
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Condition (7.16) must be fulfilled with (7.20) and (7.21). For-the Earth 
the quantity 6 is evaluated as 

6 =: 1.3. IO-‘0 .$6-l (7.2’) 

During the motion, the satellite is within a certain toroldal body whose 
axis of symmetry coincides with the polar axis (s-axis). 

The rough estimates (7.19) to (7.21) can be substantially improved for 
near-equatorial orbits. 

8. Pseudo-period10 trajrotorirr of the r@tellite. We will refer to a 

satellite trajectory as pseudo-periodic if it corresponds to a periodic solu- 

tion of the system of equations (3.14) or (4.4), (4.10), (4.11), or (7.4) to 

(7.6). Let us consider a periodic solution of the system (3.14) with the 

period close to 2n . We will investigate the segments of the corresponding 

pseudo-periodic trajectory enclosed by the sequential crossings of the equa- 

torial plane from south to north. By assumption, the expression for the 

potential energy is Independent of X . Therefore, all segments of the tra- 

jectory are Identical. They coincide exactly for a definite rotation about 

the z-axi;. The pseudo-periodic trajectories are simplest in the motion of 

the satellite. We will find the necessary conditions for the zxistence of 

the pseudo-periodic trajectory. Le.t the potential energy in tile gravlta- 

tlonal field be of the form 

1-1 (U) y) =. .- p,‘L - ;- ?,L:j (1 - 372) --- Z5? 22 (3 - 3Of -I- 35r4) -+ . . , (8.1) 

Here c is a small parameter, and the quantities u, g, v are tiown 

(see, for example, 19 and 123, pp.75 and 7’7). In order to find the periodic 

solutions, we will utilize the system of equations (4.4), (4.10), (4.11) 

which for (8.1) becomes 

d% / drfl + hu = 11 + &Us (1 - 377 + &%_P (3 - 3oy -t 35y4) -+ . . . 

d”y / dq2 + hy = (y2 - 1) i2.q $- e2vu3 (12T - 28f91 + . . . (8.2) 

dh / dq = - 2 [2ezq -t- E’VU~ (12~ - By”)1 dy / dcp + . . . 

‘Ihe Instant of the satellite intersection of the equatorial plane will be 

taken as the lnitlal time when v = 0, h = ho . We Introduce new parameters 

and variables 
/3 = e/&,-2, Yl = pv, z = l&p-l 

s = cp [h, (1 + CQp + a,p + . . .)I,“’ q = hh,-’ (8.3) 

We seeIc a periodic solution as a series In powers of 8 1131 

2 = &J + BZl + B’zs + . . . , 7 = To + Pr1 + B”r2 + * * * 

Q = Qo + Bq, + P242 + * + . (8.4) 

For the terms In (8.4) we find Equations 

d~+z,=- 1, Go ~+ro=o, x=0 (8.5) 
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The first approximation equations become 

(8.6) 

da 
--E 

ds - 4z0r0 .$ 

The second approximation equations are 

$$- -k z2 = - a 5 - a, ‘2 - qlzl - q2z,, - 6~,2r,,y, + 
1 ds= 

+ 2w, (1 - 3r02) + %Zo4 (3 - 30r02 + 35r04) 

d2ra 
s $72 = --1$+2~g+url-m + (8.7) 

-t 2W1(3Yo - 1) 4 221 (roS - To) + YIZoS (- 28705 + (for,4 - 12rJ 

dqa 
ds= - 4Z,~~~ -4Z,~, 2 - 4z17,g - 

- 2YIZ,3 (127, - 28y,9) -g 

The generating solution will be assumed 

20 = 1 + e co9 (s - SO), rO = m sin s, Qo = 1 (8.8) 

From the last equation In (8.6), we find 

q1 = m2 [cos 2s + V,e cos (3s - so) + e cos (S + so)1 (8.9) 

The conditions of perlodlclcty for x,, y, lead to the equalities 

e (a, + 2 - 3m2) = 0, m (a, + 2m2 - 2) = 0 (8.10) 

They can be satisfied In three cases. 
1. For e = 0 . Ihe generating orbit Is circular. 

2. For m = 0 . The generating orbit lies In the equatorial plane. In 

this case, Equations (8.2) can be Integrated . 

3. For 5m2-4 =O. The generating orbit has an angle of Inclination 

i= COI -1 (0.2 v%j z 63”28’ 

In satisfying (8.10), we find Z, and y, 

z1 = (1 + l/se") (1 - V2m2) - Vgm2e2 cos 2s,, - V3,m2 (6 -I- e”) cos 2s - 
- V12ea (2 - 3m2) cos (2s - 2.9,) - lllzm2 e cos (3s - so) - 

- 1/72mae2 cos (4s - 2sJ (8.11) 

rl = V4me (5m2 - 4)sin .s, - V,,me (11m2 - 12) sin (2s - so) + 
+ l/,m3e sin (2s + s,,) + l$m3 sin 3s + 11,,m3e sin (4s - s,,) (8.12) 

PollowIng Sections consider the conditions for which there exists a perl- 

odlc solution of the system (8.7). 
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9. The sener~ting orbit with m angle of lnoltitlon of,63°28’. Assuming 
that O<e<l and 5m”=4 we find pp 

q2 = 2/70e2 (5 - 18x7,) s sin 28, + . . . (9.1) 

Dots indicate periodic terms. Prom data in [ 121 (p.77) we find the value of 

Vl = 0.562. It follows from (9.1) that the generating elliptic orbit for a 

Pseudo-Periodic trajectory must have the perigee and apogee located either 

in the equatorial plane or at the most northern or southern points. At the 
same time 

sin 2s, = 0 (9.2) 

Assuming that In (8.8) 8 = 0 , we find the pe:iodlcity conditions for 

zzJy2 as 
e [a, - ‘/sr ” 173/450e2 + v1 (2/25 - i3/,e2)l = 0 (9.3) 

a2 - 14/,5 + 67/450e2 + v1 (24/2, - 3/25 e”) = 0 (9.4) 

Conditions (9.3) and (9.4) cannot be fulfilled If e f 0 . After elimi- 

nating a2 and substituting v1 , there results the impracticable conditlo,l 

0.38 + 1.83e2 = 0 (9.5) 

Assuming that In (8.8) so= 0.5n , we find the perlodiclty conditions for 

zz,vzas e[ - a2 + 4f75 - Vsoe2 + v1 (;“/,, + 3e2)l = 0 (9.6) 

- a, + 14jT5 + Y1/9,e2 + v1 (- 24/25 - 3e2) = 0 (9.7) 

After eliminating cg and substituting \)I , there results the impracti- 

cable condition 2.03 + 2.91e2 = 0 (9.8) 

The cases for sg= n , so= 1.5n are obtained from the considered cases 

by replacement of e by - e . 

The final result shows that the pseudo-periodic trajectories cannot exist 

If the generating elliptic orbit has an inclination angle t = 63”28’ and 

eccentricity e > 0 . 

10. no oua oi l oiroulrr g-rating orblt. It will be shown that In 
this case, there exists an entire family of pseudo-periodic trajectories of 
a satellite, I.e. a faml.ly of periodic solutions for the system (8.2). Let 
us assume that the potential energy Is of the form 

n (U, r) = - PLu - EU'nl (U2, r2, 8) (10.1) 

where e Is a small parameter 11, (ua , ya, b) is a power series of all vari- 
ables which Is convergent for 

I u I< %01 ITi< I&I<% (1O.Z) 

Equations (4.4), (4.10) and (4.11) become 

Let for = 
pendent varizbl? 

we have y = 0, h= h . Performing the change of the inde- 
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s= [h,(lf~8~t;E¶~...)11~((p--'50) (10.4) 

We seek a periodic solution of system (10.3) in the form of series 

u=~~+eu,+s*rr,+..., ~=~,+6~,+e~,+..., 

h = h, (qo + sq1-k a+ + * * 4 (10.5) 

From (10.3), we find the generating solution which corresponds to the 
circular orbit of the satellite 

u, = pb-l, To = m sin i (m = 00nSt, m #Oh Q0 = i (10 8) 

Let us Introduce the classes of trigonometric polynomials (convergent 
series) of the type 

Cl = pm cos (2n + 1) S, C,= jJa,c.oS 2nr 
(10.7) 

The classes of functions (10.7) form a camsutative subgroup wlth a multi- 
plication law for which the product given by the table 

Cl cs B St 

Cl Cl Cl & & 

C¶ Cl ca & & (10.8) 

Sl sa s1 cr Cl 

ss Sl sa Cl ca 

yaelds equalities, for example C,S,= S ; these equalities are regarded in 
the following sense. For any trlgonome 
%lE Cl. Xn E Sl. 

%rlc polynomials X1(&~(r) such that 
their product X&ES,. Analogous interpretation Is given 

by the symbolic equalities 

dC1 -_=s dG 
dr 19 x = &* p#is=c*, +c,,.... 

We introduce the functions ?,(u, y, s) 

Let us prove now that the functions ul, vI, gr can always be selected by 
the periodic functions s such that 

ujECSV rj E 4, qjE G 0’ = 0, 1, 2, . . .) (1O.iO) 

Equation (10.10) follows from (10.6) when j - 0 . 

Let (10.10) be fulfilled for (J = 0, l,..., n-1). Introduce the notation 

u,+ =~sL3, -l T,'= z CtijS qn’ == y I3Qj (iO.lj) 

+0 t=o f-0 

(10.9) 

From (10.8) to (10.10) follow the relatlonahlpa 

@l(u,*, r,*s 4 EC,, @, (u,,, r,', a E Sl. @,<u,., r,', ej es, (10.12) 
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Differentiation of @j(Y,,*. T,*, s) with respect to E does not alter? 
the class of the function. 

Differential equations for an' +r,? Q, are 

d%l, 
n-1 

*+ 
u*= - 

zi 
a 

r12uj 1 anq (IL,*, r,*, 8) 

rr-1 x + Qn-j”j + nl 
1 

-- 
aC 

(10.13) 

j,O E=O 

2 -1 T, = - ni1 a,,_j 2 - ni Q,_jTj-l - mm sin s -t 2 
1 +D,z (u,*, m*, s) 

j=i j:-0 8En E:_O 

(10.14) 

It follows from 
belongs to the S, 
(10.14) belongs to 

(10.12) that the right-hand side In Equation (10.13) 
class, and consequently ?*ECz. The right-h?nd side of ^ . . 
the S, class. Conslderlng the constants c ,..., Q,_~ 

known, we select a, such that the right-hand side does not con aln the term t 
with sin s In Its Fourier expansion. For m # 0 (m = sin t) the constant 
c8 Is selected uniquely. The function yn can always be selected belonging 
to class s, . The selection will be unique If vn does not contain sins 
In Its expansion. The ilght-hand side of Equation (10.13) belongs to the 
class C 
such tha e 

and therefore, the function u can always be uniquely selected 
L,E&. The validity of the rela?lonships (10.10) Is proved for 

all n . If an auxiliary condition Is applied 

Qn= 6, S = 0, (n = 1, 2, . . .) (10.15) 

then the selection of the functions u,, Y,,, 4. will be unique. 

With the above Indicated selection of the functions, we can prove the 
convergence of the series (10.4), (10.5) if b Is sufflclently large and 
c > 0 Is sufficiently small. In investigating the convergence it Is con- 
venient to utilize the normalized space fl0, 2~3 of the factions of s 

continuous on the segment [0, m] with the norm 

!I u /I ~7 nlax 11 (s) I, S F_ 10: 2x1 (10.16) 

The proof of convergence Is lr*dlved and is not presented here. From the 
p;,oof follows the exl'?tence of a family of periodic solutions for the system 
of equations (10.3) which depends on three arbitrary parameters tiO, m, (pO . 

Through each point of the space around the Earth passes one parametric 
family of near circular pseudo-periodic trajectories. 

w&h. 
Tlahr Mluoaor OS thr Earth’@ ~yrlform rhapr. The geruratin(l orbit 

lnolinrtion uyla of 63 28’ The study of satellite motions proved 
the existence of a third harmonic reiated to the pyrlform shape of the Earth 
r 121 (P.75). Let the potential energy expression, different from (8.1), be 
of the form 

n (IL, 7) = - PU - '/;$ EUS (1 - 3T2) - E2&4 (31 - 5r3) - 

- 1/6 E2Vu6 (3 - 303” + 357") i_ . . . (11.1) 

Repeating the arguments of the Sections 8 and 9, we find the condltlon 
e5 -0, auxiliary to the conditions (9.3) and (9.4 
conditions for zp, ya in the generating solution ( 

, from the perlodlclty 
.a) with m = 0.4&j , 

80 = 0 . 

The case se= 0.k is more Interesting. Conditions (9.6) and (9.7) 
alter 5.n form. After eliminating aa , there Tesults the equality 

*/ls + 2'/45 eZ + Yme&, + v1 [- g8/25 - 6e21 = 0 (11.2) 

Fulfillment of (11.2) Is necessary for the existence of pseudo-periodic 
trajectories. From the data In [12](p.79) the values of. the constants are 
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VI = 0.40 f 0.02, t& = (0.45 f 0.05) p&-l (11.3) 

Here p is the focal parameter of the generating orbit, J? is the radius 
of the Ear?h. Th e orbit perigee must lie outside the Earth, and therefore, 
the following Inequality must be fulfilled 

po>R (1 + e) (11.4) 

The equality (11.2) becomes 

ea - 0.63 eq + 0.73 = 0, Tl 3 pow >o (11.5) 

The condition (11.4) becomes 

ea $* 0.73 > (1 -+- e) 0.63 e (11.6) 

and Is always fulfilled. Condition (11.2) which is impracticable for 5 = 0, 
can be satisfied by the choice of 
Since 6 > 0 , he 

or the selection of q in (11.6). 
= 0.5rr the genera lng orbit corresponding to (8.8) is 

elongated to thesiouth. Its pedigree is at the northermost point and apogee 
at the southernmost Dolnt. The Increase of the orbit size increases the 
relative Influence o? the third harmonic ln(ll.l) compared to the fourth har- 
monlc , The smallest value of the focal parameter p,z 2.7R Is obtained for 
c L 0.85 . 

Basic conclusion As a consequence of the Earth pyrlform 
shape, there can exist pseudo-periodic trajectories (with accuracy uo to c”) 
for which the generating elliptic orbit has the angl,e of Inclination ta; 63’28’ 
and which Is elongated southward with perigee at the northernmost point. The 
eccentricity 
mate equality I 

and the focal parameter p. must be related by the approxl- 
11.5). The smaller the eccentricity e , the larger Is the 

focal parameter p. . 

12. ‘Ihr lnflurnor of the Barth’0 pyrlform rhapo on tha nom olroular 
prrudo-period10 trrjrotorler. The proof of the possibility of constructing 
pseudo-periodic utilized In Section 10 is not usable for the 
potential energy v) of the form (11.1). The presence of the third har- 
manic Imposes auxiliary conditions on the parameters of the generating solu- 
tion (10.6). 

From the perlodlclty condition for up there follows the equality 

4-5ma = 0 (12.1) 

The inclination angle of the generating orbit must be approximately equal 
to 63”28! 

Practical conclusion. The noncentral nature of the 
Earth’s gravitational field has the smallest_lnfluence upon near circular 
satellite trajectories with the Inclination angle of 63”28’. 
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